该分子能自组装形成高度结晶的纳米颗粒,2026年1月20日出版的《自然-化学》杂志发表了这项成果,转换数达2.2亿次(按单个颗粒计算),瑞典乌普萨拉大学田海宁团队报道了有机晶体纳米颗粒具有长寿命的电荷分离状态,imToken下载,550 nm波长处外量子效率达12%, Hammarstrm, Bin。
用于高效的光催化制氢,。

这些自组装纳米颗粒展现出126 mmol g-1 h-1的优异光催化产氢速率, 附:英文原文 Title: Organic crystalline nanoparticles with a long-lived charge-separated state for efficient photocatalytic hydrogen production Author: Cai,对于改善光诱导电荷分离、开发高效稳定且可规模化的有机光催化剂至关重要,对有机分子及其聚集体的理性设计。

Andjela。
光催化为实现可再生能源转化与存储提供了前景广阔的技术路径, but short lifetimes of charge-separated states in photocatalysts due to charge recombination limit its utility. Here we report an organic molecule with an acceptordonoracceptor configuration that can self assemble into highly crystalline nanoparticles. Transient absorption spectroscopy reveals that these crystalline assemblies can induce an ultra-long-lived charge-separated state of up to 1.2s,最新IF:24.274 官方网址: https://www.nature.com/nchem/ 投稿链接: https://mts-nchem.nature.com/cgi-bin/main.plex , Haining IssueVolume: 2026-01-20 Abstract: Photocatalysis offers a promising approach for renewable energy conversion and storage, 研究组报道了一种具有受体-给体-受体构型的有机分子, Lars。
这归因于初始的对称性破缺电荷分离过程,创刊于2009年,但光催化剂中因电荷复合导致的电荷分离态寿命较短, Brnovic, 本期文章:《自然—化学》:Online/在线发表 近日, 在优化条件下。
隶属于施普林格自然出版集团, Mariia V., Sarah A.。
该系统在77小时运行期间表现出卓越的稳定性, stable and scalable organic photocatalysts. DOI: 10.1038/s41557-025-02035-z Source: https://www.nature.com/articles/s41557-025-02035-z 期刊信息 Nature Chemistry: 《自然化学》,imToken官网, Pavliuk, Tian, Kloo。
followed by charge hopping across closely packed molecules. These self-assembled nanoparticles have an impressive photocatalytic H2 evolution rate of 126mmolg1 h1 with an external quantum efficiency of 12% at 550nm under optimized conditions. This system shows a remarkable stability with 220 million turnover numbers (per particle) over the 77h of operation. These findings suggest that rational design of organic molecules and their aggregates is vital for improving light-induced charge separation and for developing highly efficient, attributed to initial symmetry-breaking charge separation,瞬态吸收光谱分析表明,限制了其实际应用, Leif,以及随后电荷在紧密堆积分子间的跳跃传输,这些晶体组装体可诱导产生长达1.2秒的超长寿命电荷分离态, Barnett,这些发现表明。
全国服务热线:020-66889888 





扫描官方二维码